Montag, Januar 13, 2025

Künstliche Intelligenz ermöglicht neue Methoden in der Bildgebung

Neue Methoden der künstlichen Intelligenz und der Bildgebung könnten dabei helfen, die molekulare Zusammensetzung eines Gewebes zu analysieren.

Mit seinen „ERC-Consolidator Grants“ unterstützt der Europäische Forschungsrat (ERC) exzellente junge Wissenschaftler beim Ausbau ihrer unabhängigen Karriere. Lena Maier Hein vom Deutschen Krebsforschungszentrum erhält die renommierte Förderung nun für ihr Vorhaben, molekulare Gewebeeigenschaften einfach mit Licht zu analysieren. Das besonderes an ihrem Ansatz: Sie nutzt Methoden der künstlichen Intelligenz (KI) zum einen, um realistische „digitale Zwillinge“ medizinischer Geräte und menschlicher Gewebe zu entwickeln. Darüber hinaus hilft die künstlichen Intelligenz dabei, klinische Daten mit den in der virtuellen Umgebung trainierten Algorithmen in der Bildgebung zu entschlüsseln.

Gäbe es die Möglichkeit, bei Patienten nichtinvasiv und ohne schädliche Strahlung die molekulare Zusammensetzung eines Gewebes zu analysieren, so käme dies einer Revolution der Medizin gleich. Verschiedene Gewebe im Körper unterscheiden sich hinsichtlich ihres Sauerstoffgehalts, der Temperatur oder der Konzentration von Wasser oder anderen biologischen Molekülen. Gesunde Gewebe unterscheiden sich in manchen dieser Eigenschaften wiederum von kranken.

 

Künstliche Intelligenz und spektrale Techniken der Bildgebung

Wissenschaftler suchen daher bereits seit Jahrzehnten nach einer Methode, um diese Gewebeeigenschaften „auf einen Blick“ zu entschlüsseln. Die Techniken der spektralen Bildgebung machen sich die Tatsache zunutze, dass die verschiedenen Gewebekomponenten einzigartige optische Eigenschaften haben. Wenn Licht in biologisches Gewebe eindringt, durchläuft es komplexe Wechselwirkungen, etwa Reflexion, Absorption und Streuung. Spektrale Techniken der Bildgebung, wie die multispektrale Bildgebung mit diffuser Reflexion und die Photoakustik, haben dadurch das Potenzial, wichtige Gewebeeigenschaften wie Sauerstoffgehalt, Temperatur oder die Konzentration von Wasser oder verschiedener biologischer Moleküle in hoher räumlicher Auflösung darzustellen.

Die jahrzehntelange Forschung auf diesem Gebiet hat jedoch bislang keine Methoden hervorgebracht, mit denen sich diese Gewebeparameter im klinischen Routineeinsatz akkurat quantifizieren lassen. Die Versuche, dieses Problem mit maschinellem Lernen und künstlicher Intelligenz anzugehen, scheitern häufig am Fehlen annotierter Referenzdaten, die für ein Training der Algorithmen benötigt werden. Das liegt insbesondere daran, dass es bisher keine Referenzmethode gibt, um zu den aufgenommenen Bildern die klinisch relevante Information -wie beispielsweise die Sauerstoffsättigung – räumlich aufgelöst zu generieren.

Lena Maier-Hein umgeht diesen gefürchteten „Flaschenhals“, indem sie Algorithmen auf Basis von simulierten Daten trainiert. Dazu nutzt sie sämtliches Vorwissen, um simulierte Bilder mit perfekten Referenzannotationen zu erzeugen. Dadurch ist sie nicht abhängig davon, dass ihr Daten zur Verfügung gestellt werden und kann gleichzeitig regulatorische Hürden umgehen.

 

Entschlüsselung der Bilder verbessern

Doch das Lernen aus Simulationen scheitert häufig am fehlenden Realismus der Simulation – das heißt, das vorhandene Wissen reicht nicht aus, um vollkommen realistische Bilder zu simulieren. KI-Forscher bezeichnen dieses Problem als „domain gap“. Maier-Hein geht noch einen Schritt weiter und nutzt KI-Methoden, um diese „Lücke“ zu überwinden. Sie setzt die künstlichen Intelligenz also gleich doppelt ein: Zum einen für die Entschlüsselung der Bilder und zusätzlich, um die Simulation zu verbessern. Das Konzept soll es den bildgebenden Systemen also ermöglichen, aus ihren Erfahrungen zu lernen.

Diese zweite Generation der Spektralbildgebung ist für den Patienten sicher, kostengünstig und hat das Potenzial, viele Bereiche der Gesundheitsversorgung zu verbessern. Eine Vielzahl klinischer Anwendungen dafür ist denkbar – von der Krebsdiagnose bis hin zum Monitoring der Therapien von Herz-Kreislauf- und entzündlichen Erkrankungen.

Bereits 2014 hatte Lena Maier-Hein einen ERC-Strating Grant eingeworben, eine Förderung, die Nachwuchsforscher bei ihren ersten Schritten in die wissenschaftliche Selbständigkeit unterstützen soll. Der Europäische Forschungsrat zeichnet sie nun mit einem „Consolidator Grant“ aus. Dieses Förderinstrument soll bereits etablierten Nachwuchswissenschaftler – bis zu zwölf Jahre nach der Promotion – unterstützen und den Ausbau einer unabhängigen Karriere fördern.


Quelle:

Deutsches Krebsforschungszentrum

Latest Articles

Folgt uns auf Facebook!

Pflanzentherapie

Schwarzer Knoblauch: Gut fürs Herz ohne Körper- oder Mundgeruch

Schwarzer Knoblauch macht es möglich, dass man die vorteilhafte Knoblauch-Wirkung auf das Herz nutzt ohne unangenehmen Körper- oder Mundgeruch. Schwarzer Knoblauch macht es möglich, denn...
- Advertisement -

Related Articles

Gute Wirkung von Rosenöl gegen Depressionen und Stress

Positive Wirkung der Rose auf die Psyche: die alternative Anwendung von Rosenöl, ist auch gegen Depressionen und Stress zu empfehlen. Die aufhellende Wirkung von Rosenöl auf...

Wurzelwerk und Wildfrüchte

Wurzelwerk und Wildfrüchte: Entdeckungsreise in die Welt der Naturkräfte Taucht ein in das faszinierende Universum der Wurzeln und Wildfrüchte an diesem inspirierenden Wochenende mit Barbara,...

Teufelskralle: Schmerzmittel mit natürlicher Wirkung gegen Entzündungen und Schmerzen

Teufelskralle zeigt als Schmerzmittel gute Wirkung, als unterstützende Therapie hilft es gegen Schmerzen und Entzündung bei Rheuma-Erkrankungen. Unter dem Strich sind Heilpflanzen, pflanzliche Mittel oder Arzneipflanzen gegen Rheuma...