Dienstag, September 17, 2024

Netzwerke von Nervenzellen im Gehirn

Welche Zellen geben im Hirn den Takt vor? Bearbeiten Netzwerke von Nervenzellen im Gehirn eine gemeinsame Aufgabe, synchronisieren sie ihre Aktivität in Schwingungen einer bestimmten Frequenz? Verursacht eine Überreaktion der Nervenzellen im Gehirn epileptische Anfälle? Wissenschafter des Universitätsklinikums Heidelberg finden einige Antworten.

 

Wissenschaftler des Universitätsklinikums Heidelberg haben nun die Taktgeber verschiedener Rhythmen identifiziert: Dabei geben unterschiedliche Zellgruppen jeweils ein anderes Tempo vor. Die Ergebnisse sind jetzt in Nature Neuroscience erschienen.

 

Verschiedene Frequenzen und unterschiedliche Hirnleistungen

Wenn Nervenzellen im Gehirn miteinander kommunizieren, geben sie elektrische Signale häufig in einer bestimmten Frequenz weiter. So pendeln sie sich auf einen gemeinsamen Rhythmus ein. Eine gängige Hypothese besagt, dass verschiedene Frequenzen mit unterschiedlichen Hirnleistungen gekoppelt sind. Das könnte zum Beispiel die Steuerung von Bewegungen oder der Wahrnehmung von Gegenständen sein. Doch wie finden die Zellen in den richtigen Takt?

Wissenschaftler des Universitätsklinikums Heidelberg haben nun in einem bestimmten Hirnbereich, dem Riechkolben von Mäusen, die Zellgruppen ausgemacht, die anderen Neuronen ihren Rhythmus aufzwingen. Es zeigte sich: Für jede der zwei untersuchten Frequenzen ist jeweils ein anderer Zelltyp zuständig. Die nun in Nature Neuroscience erschienenen Ergebnisse werfen ein erstes Licht auf die Entstehung des bisher wenig verstandenen Phänomens der Gehirnrhythmen. Sie schaffen zudem eine wichtige Grundlage zum besseren Verständnis verschiedener Erkrankungen wie der Epilepsie oder Schizophrenie, die mit Störungen eben jener Rhythmen einhergehen.

 

Elektrische Potentiale von Nervenzellen im Gehirn bereits vor fast 100 Jahren gemessen

Seit in den 1920er Jahren erstmals elektrische Potentiale des Gehirns gemessen wurden, ist bekannt, dass Nervenzellen im Gehirn rhythmisch aktiv sind. Wie auf Absprache geben sie ihre Signale in bestimmten Frequenzen weiter, wobei sich diese auch überlagern oder abschwächen können: Mit Hilfe dieses Feintunings kann das Gehirn auf verschiedene Reize angemessen reagieren. Den Sinn dieser Rhythmen erklären sich Physiologen nach einer gängigen Hypothese wie folgt: Für die Verarbeitung ein und desselben Reizes sind in der Regel mehrere Hirnareale gefragt. Um zu prüfen, ob man z.B. eine vorbeigehende Person kennt, muss das Gehirn – vereinfacht dargestellt – auf die Bewegung reagieren, das Bild verarbeiten, die Gesichtsfelderkennung aktivieren und mit der Erinnerung an bekannte Menschen abgleichen. Damit dabei kein Chaos aus zig unzusammenhängenden Meldungen entsteht, pendeln sich die in den Gesamtprozess eingebundenen Netzwerke von Nervenzellen gewissermaßen aufeinander ein.

 

Zu häufig im Gleichtakt: Überreaktion der Nervenzellen im Gehirn verursacht epileptische Anfälle

„Diese Hypothese wird derzeit intensiv erforscht. Momentan weiß man weder wie oder wo diese Rhythmen entstehen, noch was genau sie bewirken“, sagt Seniorautor Dr. Andreas Schäfer, der inzwischen vom Institut für Anatomie und Zellbiologie des Universitätsklinikums Heidelberg an das University College in London gewechselt ist. Fehler in diesem System haben gravierende Folgen.

Bei Epilepsie synchronisieren sich Hirnareale ohne ersichtlichen Grund, wodurch es zu den typischen Krampfanfällen kommt. Bei der Schizophrenie hingegen kommt es zu gestörten Rhythmen im Stirnlappen des Gehirns. Die Betroffenen leiden u.a. unter Wahnvorstellungen und Halluzinationen. Bei beiden Erkrankungen wäre es hilfreich, die fehlgesteuerten Taktgeber zu kennen. So könnte man der Ursache der Erkrankung näher kommen und passende Therapien entwickeln.

Das Team um Dr. Schäfer erforschte den Entstehungsort der Rhythmen in einem überschaubaren Modellsystem, dem Riechkolben von Mäusen. In diesem Gehirnareal werden Signale der Geruchszellen in der Nase verarbeitet, eingeordnet und unterschieden. Die Wissenschaftler schalteten bei genetisch veränderten Tieren einzelne Zellgruppen im Gehirn durch die Bestrahlung mit Licht vorübergehend aus.

Mit dieser aktuellen, sogenannten optogenetischen Methode entdeckten sie, dass die beiden wichtigsten Signalfrequenzen des Riechhirns, die schnelle Gamma- sowie die deutlich langsamere Theta-Frequenz, von unterschiedlichen, bereits bekannten Zellgruppen dieses Gehirnbereichs erzeugt werden, den Körner-Zellen und den glomerulären Zellen.

Ihr Zusammenwirken ermöglicht die Unterscheidung von Gerüchen. „Mit dieser Arbeit zu den Netzwerken von Nervenzellen im Gehirn haben wir gezeigt, wie unterschiedliche Rhythmen zustande kommen und dass jeweils andere Zelltypen dafür verantwortlich sind“, so Schäfer. „Das ist ein wichtiger Schritt, um die Signalverarbeitung im Gehirn zu verstehen.“

 

Quellen: Fukunaga, I., Herb, J., Kollo, M., Boyden, E.S., Schaefer A.T. (2014): Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience 2014 Sep;17(9):1208-16. doi: 10.1038/nn.3760
Kollo, M., Schmaltz, A., Abdelhamid, M., Fukunaga, I., Schaefer A.T. (2014): “Silent” mitral cells dominate odor responses in the olfactory bulb of awake mice. Nature Neuroscience 2014 Oct;17(10):1313-5. doi: 10.1038/nn.3768.

http://www.ana.uni-heidelberg.de/ Institut für Anatomie und Zellbiologie

 

Bild: Die grafische Abstraktion zeigt ein Netzwerk von Nervenzellen im Gehirn. ©  Sergey Nivens / shutterstock.com

Latest Articles

Folgt uns auf Facebook!

Pflanzentherapie

Wurzelwerk und Wildfrüchte

Wurzelwerk und Wildfrüchte: Entdeckungsreise in die Welt der Naturkräfte Taucht ein in das faszinierende Universum der Wurzeln und Wildfrüchte an diesem inspirierenden Wochenende mit Barbara,...
- Advertisement -

Related Articles

Xanthohumol in Hopfen gegen Leber- und Dickdarmkrebszellen

Xanthohumol, eine Verbindung, die in Hopfen gefunden wird, zeigt wichtige Eigenschaften, die gegen das metabolische Syndrom und gegen Krebs helfen könnten. Hopfen wurde früher zuerst...

Wildkräuter-Smoothies: mehr Energie, Entschlacken und Entgiften

Wildkräuter-Smoothies liefern Energie und helfen beim Entschlacken und Entgiften sowie gegen Fettdepots, Wildkräuter-Smoothies Rezepte bieten viel Raum für Kreativität! Im Grunde genommen stellen Wildkräuter-Smoothies kleinen...

Verwendung der Edelkastanie in der Volksmedizin

In der Volksmedizin finden die Naturstoffe der Edelkastanie und der Edelkastanienblätter traditionell vielfache Verwendung für verschiedene Zwecke. Die Edelkastanie (Castanea sativa, auch bekannt als Esskastanie)...